Cross talk in implicit assignment of error information during bimanual visuomotor learning.
نویسندگان
چکیده
When a neural movement controller, called an "internal model," is adapted to a novel environment, the movement error needs to be appropriately associated with the controller. However, their association is not necessarily guaranteed for bimanual movements in which two controllers--one for each hand--result in two movement errors. Considering the implicit nature of the adaptation process, the movement error of one hand can be erroneously associated with the controller of the other hand. Here, we investigated this credit-assignment problem in bimanual movement by having participants perform bimanual, symmetric back-and-forth movements while displaying the position of the right hand only with a cursor. In the training session, the cursor position was gradually rotated clockwise, such that the participants were unaware of the rotation. The movement of the right hand gradually rotated counterclockwise as a consequence of adaptation. Although the participants knew that the cursor reflected the movement of the right hand, such gradual adaptation was also observed for the invisible left hand, especially when the cursor was presented on the left side of the display. Thus the movement error of the right hand was implicitly assigned to the left-hand controller. Such cross talk in credit assignment might influence motor adaptation performance, even when two cursors are presented; the adaptation was impaired when the rotations imposed on the cursors were opposite compared with when they were in the same direction. These results indicate the inherent presence of cross talk in the process of associating action with consequence in bimanual movement.
منابع مشابه
Crosstalk in implicit assignment of error information during 1 bimanual visuomotor learning
Shoko Kasuga and Daichi Nozaki 3 1 Graduate School of Education, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 4 Tokyo 113-0033, Japan; 2 Research Fellow of the Japan Society for the Promotion of 5 Science 6 7 Running head: Implicit crosstalk in bimanual visuomotor learning process 8 9 Contact information: 10 Daichi Nozaki, PhD 11 Graduate School of Education 12 The University of Tokyo 13 7-...
متن کاملExplicit and implicit contributions to learning in a sensorimotor adaptation task.
Visuomotor adaptation has been thought to be an implicit process that results when a sensory-prediction error signal is used to update a forward model. A striking feature of human competence is the ability to receive verbal instructions and employ strategies to solve tasks; such explicit processes could be used during visuomotor adaptation. Here, we used a novel task design that allowed us to o...
متن کاملThe Differences in Sensorimotor Rhythm Power During Performing In-Phase and Anti-Phase Patterns in Bimanual Coordination
Purpose: The sensorimotor cortex oscillations (frequency ranging between 12 and 15 Hz), commonly known as Sensorimotor Rhythm (SMR) has previously displayed a promising link between the performance of the visuomotor related to skill execution and part of psychology that is adaptive (e.g. the process linked attention which is automatic). This study examined the extent of SMR power in the executi...
متن کاملContext-dependent partitioning of motor learning in bimanual movements.
Human subjects easily adapt to single dynamic or visuomotor perturbations. In contrast, when two opposing dynamic or visuomotor perturbations are presented sequentially, interference is often observed. We examined the effect of bimanual movement context on interference between opposing perturbations using pairs of contexts, in which the relative direction of movement between the two arms was di...
متن کاملAsymmetric control mechanisms of bimanual coordination: An application of directed connectivity analysis to kinematic and functional MRI data
Mirror-symmetrical bimanual movement is more stable than parallel bimanual movement. This is well established at the kinematic level. We used functional MRI (fMRI) to evaluate the neural substrates of the stability of mirror-symmetrical bimanual movement. Right-handed participants (n=17) rotated disks with their index fingers bimanually, both in mirror-symmetrical and asymmetrical parallel mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 106 3 شماره
صفحات -
تاریخ انتشار 2011